

Mathematics Tutorial Series

Integral Calculus #7

Properties of Definite Integrals

Recall that the definite integral:

$$\int_{x-a}^{x=b} f(x) \, dx$$

is the total change between x = a and x = b, in the quantity with rate of change f(x).

So if F' = f then

$$\int_{x=a}^{x=b} f(x) dx = F(b) - F(a)$$

We described this as the total amount of water flowing down a pipe from time a to time b when the flow meter reading is f(x).

We can simplify the notation to:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Using the water-in-the pipe analogy makes it easy to see that the following properties are true.

Two pipes – same interval:

$$\int_{a}^{b} f(x) + g(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx$$

One pipe – two intervals:

$$\int_a^b f(x) \, dx + \int_b^c f(x) \, dx = \int_a^c f(x) \, dx$$